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Abstract. The concept of local stiffness associated with transverse local spin fluctuations is
introduced and used to investigate the coupling between the magnetization of atomic planes in the
ferromagnetic state of a metallic material. It is shown that the coupling strength in the surface region
may differ significantly from that in the bulk, and the possibility of an antiferromagnetic alignment
between surface and bulk magnetizations is pointed out. A comparison between calculated values
of local and spin-wave stiffnesses is presented, and the stability of the ferromagnetic state against
both short- and long-wavelength spin fluctuations is discussed.

1. Introduction

The exchange interaction between itinerant electrons may lead to the formation of local
magnetic moments in metals. The nature of the coupling between these moments—its sign,
strength, and range—depends on the electronic structure of the system, which is determined by
its composition and atomic arrangement. The study of interaction between magnetic moments
has been one of the main issues in metallic magnetism, and a great deal of attention has been
concentrated on the subject, both theoretically and experimentally.

Information about the magnetic coupling in ferromagnets can be obtained from the
behaviour of the magnetization M in the low-temperature T -region, where Bloch’s law,
M(T )/M(0) � 1 − CT 3/2, is observed. The pre-factor C depends on the strength of the
coupling. This is directly seen in the case of the simple Heisenberg Hamiltonian

H = −
∑
i,j

Jij �Si · �Sj

for localized spin systems, where Jij is the exchange coupling between spins �Si and �Sj , on
sites i and j , respectively. Within the random-phase approximation and for a homogeneous
system with nearest-neighbour interactions only, we find for the bulk magnetization that

C = ζ
(

3

2

)
gµB

M(0)2

(
kB

πSa2J

)3/2

(1)
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where ζ is the Riemann zeta function, g is the gyromagnetic factor, µB is the Bohr magneton,
kB is the Boltzmann constant, S is the spin magnitude, and a is the lattice parameter. Thus,
the stronger the coupling J , the slower the reduction ofM with temperature.

The sensitivity of the coupling with the atomic arrangement is well illustrated by
the difference between the temperature dependences of the surface (MS) and bulk (MB)
magnetizations of a ferromagnet. For sufficiently low T , it has been shown [1, 2] that both
MS and MB follow Bloch’s law, with different pre-factors CS and CB . Assuming that the
magnetization and exchange interactions are uniform throughout the system, it is possible to
show, using rather general arguments, thatCS = 2CB [1,2]. The factor 2 is purely geometrical
and is a result of environmental differences between surface and bulk sites (at the surface,
there are neighbouring sites on just one of its sides). However, for several systems, surface
magnetization measurements with spin-polarized electrons yield other values for the ratio
CS/CB [3–6]. This is a consequence of changes in the local electronic structure and magnetic
interactions introduced by the surface in its proximity. Using localized Heisenberg models
with nearest-neighbour interactions only, Mathon and Ahmad [7] have shown that changes in
the coupling JS between the surface plane and the rest of the system lead to a pseudo-T 3/2 law
for the surface magnetization, withCS �= 2CB . In fact, on the basis of this simple model and by
treating the ratio between JS and the bulk exchange interactions JB as an adjustable parameter,
Mathon and Ahmad [7] and Scholl et al [6] have succeeded in reproducing experimentalMS(T )

data for several permalloy systems. Such a phenomenological approach highlights the need
for a proper calculation of the exchange interactions in metallic systems, on the basis of their
electronic structure.

The above results have motivated the present study of the coupling between the
magnetization of a given atomic plane and the rest of the system in itinerant-electron
ferromagnets. Our initial aim was to investigate how this coupling changes as one goes from
the bulk to the surface. The theory that we developed has naturally led to the definition of a
local stiffnessDl of the system with respect to transverse local spin fluctuations, which proved
useful to our investigation. We have also found that such a stiffness constant provides the basis
for an additional stability criterion for the ferromagnetic state.

We arrange this paper as follows. In section 2 we develop the theory and introduce the
concept of local stiffness. We then focus on a simple model and present in section 3 results
on Dl for planes both in the bulk and at the surface. In section 4 we discuss the stability of
the ferromagnetic state against both local and extended transverse spin fluctuations. Finally,
in section 5, we present our conclusions.

2. Local stiffness constant

We consider the ferromagnetic state of an interacting itinerant-electron system, with its
magnetization pointing in the ẑ-direction. We assume that the electron–electron interaction is
described by an effective local exchange field, acting on the magnetic carriers, which is parallel
to the local magnetization direction. In order to estimate the strength of the coupling between
the magnetization Ml in a given atomic plane l and the rest of the system, we calculate the
energy necessary to rotate the direction of Ml by an angle θ relative to ẑ, as represented in
figure 1.

Such a quantity can be calculated from the thermodynamic potential [8–10]

� = − 1

β

∫
dω ln{1 + eβ(µ−ω)}

(
− 1

π
Im Tr

∑
i

[Gii(ω)]

)
(2)

where β = 1/kBT , µ is the chemical potential, [Gii(ω)] is the Green function matrix for
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l

θ

Figure 1. A schematic representation of a ferromagnet where the magnetization in plane l is rotated
by an angle θ with respect to that of the rest of the system.

electrons with up and down spins at site i, and Tr stands for the trace over spin and atomic
orbital indices. The rotation corresponds to a change in the direction of the local exchange
field, with a consequent variation V (θ) of the local electron potential. Assuming that the
atomic planes are parallel to the zx-plane, one has

[V (θ)] = −{[cos(θ)− 1]σz + sin(θ)σx} ⊗ [Vex] (3)

where σz and σx are the usual Pauli matrices, and [Vex] is a matrix in orbital indices representing
the strength of the local exchange potential. The change  �l(θ) can be written as

 �l(θ) = 1

πβ

∑
q

∫
dω ln{1 + eβ(µ−ω)} Im Tr

∑
p

[ Gpp(q, ω, θ)] (4)

where q is a two-dimensional wave vector parallel to the planes and belonging to the two-
dimensional Brillouin zone, and p is a plane index. It is easy to show that

 Gpp(θ) = [gpl][Tll(θ)][glp] (5)

where [g] = [G(θ = 0)] is the Green function of the ferromagnetic state,

[Tll(θ)] = [V (θ)]{[I ] − [gll][V (θ)]}−1 (6)

is the scattering matrix associated with [V (θ)], and [I ] represents the identity matrix in spin
and orbital indices. To simplify the notation, we have omitted the arguments q and ω in the
above two equations. It follows that

 �l(θ) = 1

π

∑
q

∫
dω f (ω) Im Tr ln{[I ] − [gll(q, ω)][V (θ)]} (7)

which reduces to [10]

 �l(θ) = 1

π

∑
q

∫
dω f (ω) Im tr ln{[I ] + (cos(θ)− 1)

× [Vex]([g
↑
ll] − [g↓

ll] + 2[g↑
ll][Vex][g

↓
ll])}. (8)

Here tr stands for the trace over orbital indices only, f (ω) is the Fermi function, [I ] is the
identity matrix in orbital indices, and [gσll (q, ω)] is the propagator for an electron with spin σ
in the ferromagnetic state.

For small values of θ , charge fluctuations can be ignored and the change in the thermo-
dynamic potential can be written as  �l(θ) � Dlθ2, where

Dl = − 1

2π

∑
q

∫ ∞

−∞
dω f (ω) Im tr{[Vex]([g↑

ll] − [g↓
ll] + 2[Vex][g

↑
ll][g

↓
ll])}. (9)

Dl represents a local stiffness of the system against local transverse spin fluctuations, and
measures the strength of the coupling between the magnetizationMl and the rest of the system.
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Information about the electronic structure is contained in the local one-electron propagators
g

↑ (↓)
ll for ↑ (↓) spins in plane l. Dl depends upon surface orientation and varies with l,

approaching a bulk value DB for l → ∞. It is to be distinguished from the usual stiffness
constant Dsw which enters the dispersion relation of long-wavelength spin waves (extended
transverse spin fluctuations in the ferromagnetic state). Both Dl and Dsw are related to the
exchange interactions between local magnetic moments, but they reflect the rigidity of the
system to different types of excitations. The relation between Dl and the exchange couplings
is most clearly seen in the case of the ferromagnetic Heisenberg model. The rotation of Ml

with respect to the magnetization of the rest of the system leads to the definition of a local
stiffness given by

Dl = 1

2

∑
i∈l,j /∈l

Jij SiSj . (10)

It is clear that the dependence of Dl upon l provides information on the variation of the
exchange coupling across the system. In particular, it can be used to investigate the local
stiffness in the bulk and at the surface. To illustrate this point, we present in the next section
results on Dl for a simple model.

3. Calculation of Dl

We consider a single-band tight-binding model on a simple cubic lattice, with nearest-
neighbour hoppings only. We keep just on-site electron–electron interaction U , and use the
Hartree–Fock approximation. We assume that the one-electron self-consistent equations have
a ferromagnetic solution and, in this case, the Hamiltonian for electrons with spin σ reads

Hσ =
∑
i

(εi − σVex)c†
iσ ciσ +

∑
i,j

tij c
†
iσ cjσ (11)

where c†
iσ (ciσ ) is the operator which creates (destroys) an electron with spin σ on site i, εi

and tij are the site and hopping energies, and Vex = Um/2. Herem = n↑ − n↓ is the reduced
magnetization, which we assume to be uniform throughout the system, with nσ representing
the number of electrons with spin σ on each site. The exchange splitting between the up- and
down-spin bands is equal to 2Vex .

We assume that the atomic planes are perpendicular to the (010) direction. It is interesting
to look at the dependence of Dl on the band filling, for fixed values of Vex . We focus on two
particular cases, corresponding to planes at the surface and in the bulk. The energy scale has
been chosen such that 2t = 1. Figure 2 presents results for DS and DB as functions of the
Fermi energy EF , for Vex = 0.5 (a) and 1.0 (b). The curves are symmetric with respect toEF ,
and EF = 0 corresponds to band half-filling. We remark that on fixing the value of Vex we
are assuming that for each EF the on-site interaction U is such that a ferromagnetic solution
exists. Therefore, negative values of DS and DB mean that the ferromagnetic ground state is
unstable against a local infinitesimal rotation of the surface and bulk plane magnetizations,
respectively. Such instabilities suggest a tendency for a local antiferromagnetic alignment,
and are expected to depend upon the Fermi energy. To make the comparison between DS and
DB meaningful we have multiplied the former by 2, since the surface magnetization is coupled
to planes on just one of its sides. We notice that the two curves have similar behaviour: both
oscillate between positive and negative values as a function of EF . However, the magnitudes
of the two stiffnesses are not equal, which highlights the difference in strength between the
inter-plane couplings at the surface and in the bulk. This difference results from changes in
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Figure 2. Calculated values ofDB (open circles) and 2DS (filled squares) as functions of the Fermi
energy EF , for Vex = 0.5 (a) and 1.0 (b). The energy scale is such that the hopping t = 0.5. The
curves are symmetric with respect to EF , and EF = 0 corresponds to band half-filling.

the local electronic structure of the system near the surface. We notice in figure 2 that the
coupling at the surface may be either weaker or stronger than that in the bulk.

Thus, the present calculations provide support to previous works on the temperature
dependence of the surface magnetization of ferromagnets, which assumed either softening or
strengthening of the surface exchange [6, 7, 11]. It should be stressed that a negative value of
DB indicates that the corresponding ferromagnetic solution of the one-electron self-consistent
equation is not stable with respect to local transverse spin fluctuations. Indeed, the result
DB < 0 for EF = 0 is in agreement with the fact that the ground state of the half-filled
one-band model on a simple cubic lattice is expected to be antiferromagnetic, rather than
ferromagnetic.

It is interesting to notice that for some values ofEF , for whichDB is positive, we may find
negative values of DS . This indicates the possibility of an antiferromagnetic alignment of the
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surface magnetization with respect to a ferromagnetic bulk. In other words, the mere existence
of a free surface may yield an antiferromagnetic coupling between the surface plane and the
rest of the system. In real systems, however, other effects such as surface imperfections and
anisotropies [12–15], may also strongly influence the surface magnetic ground state, and must
be taken into account in a more comprehensive analysis. Appraisal of the relative importance
of such effects in a particular system requires good experimental surface characterization [12].

4. The stability criterion for the ferromagnetic state

The stability of the ferromagnetic state against long-wavelength spin-wave excitation can be
investigated by calculating the spin-wave stiffness constant Dsw. A strong positive value of
Dsw indicates stability of the ferromagnetism. However, the stiffness constant DB introduced
above provides us with an additional stability condition for the ferromagnetic state. Clearly,
the ferromagnetic state must be stable against both extended long-wavelength (Dsw > 0) and
localized (DB > 0) transverse spins fluctuations. But one could rightly argue over whether
these two conditions are in fact independent. In other words: does stability against one of
these fluctuations imply stability against the other? In order to answer these questions, we
have evaluated Dsw and DB for the same ferromagnetic state.

The spin-wave stiffness can be obtained from the ferromagnetic band-structure of the
material. For the Hamiltonian in equation (10) and at T = 0, Dsw is given by [16]

Dsw = 2Vex
3m

[ ∑
εk<µ+

(∇2εk

4Vex
− |∇εk|2

4V 2
ex

)
+

∑
εk<µ−

(∇2εk

4Vex
− |∇εk|2

4V 2
ex

)]
(12)

where εk is the paramagnetic band-structure,m is the magnetic moment, and µ± = EF ±Vex .
Figure 3 shows DB (full line) and Dsw (dashed line) as functions of EF for Vex equal to

0.5 (a) and 1.0 (b). Since the two constants have different dimensions, they have been normal-
ized by their respective values at EF = 0. For the two values of Vex , the behaviour of Dsw
with EF is qualitatively the same, showing a single region of instability of the ferromagnetic
state, a near-half-filled band. We notice that the width of this region increases with Vex . As
regardsDB , the change in the shape of the curve with Vex is more pronounced and interesting.
For Vex = 0.5 we find two stability regions (with their counterparts for EF < 0), the first
of which is no longer present for Vex = 1.0. However, the most significant point is the
fact that, in the two cases, the regions of positive values of Dsw and DB do not necessarily
coincide. This means that the same system may be stable with respect to one type of spin
fluctuation but not with respect to the other. It follows that the conditions for the stability of
the ferromagnetic state are indeed more restrictive than those predicted solely by imposing
Dsw > 0. It is certainly possible for the ferromagnetic state to be unstable with respect to
different excitations, particularly if the stable ground state is antiferromagnetic, a spin-density
wave, or has spiral structure. A more comprehensive analysis would involve investigating the
stability against other spin perturbations, but this is much more laborious, particularly when
surface effects are present.

5. Conclusions

In this paper we have investigated the coupling between the magnetizations of given atomic
planes in the ferromagnetic state of metallic systems. We have introduced the concept
of a local stiffness constant associated with local transverse spin fluctuations, which was
used to study some surface effects on the exchange couplings. Results for a simple model
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Figure 3. DB (full line) and Dsw (dashed line) as functions of EF for a ferromagnetic system for
Vex = 0.5 (a) and 1.0 (b). The energy scale is such that the hopping t = 0.5. Both constants are
normalized by their respective values at EF = 0.

indicate that the coupling between the surface plane and the rest of the system can be either
stronger or weaker than that in the bulk. This result supports assumptions made in previous
works [6,7,11] to explain observed relations between the temperature dependence of the surface
and bulk magnetizations in several systems. Finally, we have proposed an additional stability
criterion for the ferromagnetic state, which verifies its stiffness against localized transverse spin
fluctuations. The criterion is relatively simple to examine, and may restrict the stability range
obtained solely by spin-wave analysis. As far as ferromagnetic surface stability is concerned,
in addition to the local transverse spin-fluctuation stiffness discussed here, other effects such
as surface anisotropies, the existence of roughness, impurities, and lattice relaxations, as well
as formation of magnetic domains, may be very important, and must be taken into account.
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